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ABSTRACT

Shear-generated turbulent mixing in stellar radiative regions (stably stratified) has recently been found to be
too weak. This has stimulated the search for the missing mixing. We suggest that there may not be a missing
mixing problem. Phenomenological models have underestimated its real strength, thus leading to a negative
assessment of its real potential.

Subject headings: convection — hydrodynamics — stars: evolution — stars: interiors — stars: rotation

1. INTRODUCTION

It was suggested long ago that in the radiative-dominated
regions of a star in which stratification is stable, turbulent mix-
ing may be provided by mean shear (Zahn 1974). Several well-
documented studies (Pinsonneault et al. 1989; Schatzman &
Baglin 1991; Maeder 1997; Maeder & Meynet 1996; Pinson-
neault 1997; Chaboyer, Demarque, & Pinsonneault 1995; Talon
et al. 1997) have, however, concluded that such a mechanism
provides too little mixing to explain stellar structure and ev-
olution data. Some mixing is missing.

The suggestion of this Letter is that there may not be a
missing mixing problem. Using state-of-the-art turbulence mod-
eling, we show that shear-induced mixing is larger than pre-
viously thought and perhaps even sufficient to overcome the
“missing mixing.” Clearly, the last assertion can only be con-
firmed (or denied) by a specific stellar calculation that employs
the results of this model. Before we present the quantitative
arguments, we discuss the physics of the problem. There are
two key processes. First, turbulence generated by a mean shear
can only survive up to a critical Richardson number Ricr, above
which stable stratification dominates and extinguishes turbu-
lence. What is the true value of Ricr?

Second, radiative losses by the eddies weaken the stabilizing
temperature gradient and thus help turbulence. We recall that

, where N is the Brunt-Vaisala frequency; N2 is2 2Ri 5 N /S
proportional to the positive temperature gradient, while S is
the mean shear that generates turbulence. Radiative losses erode
the temperature gradient, lower N, and thus force the system
toward the neutral case , thus maximizing the shear-Ri ∼ 0
generated mixing. The two processes are clearly not indepen-
dent, and one must also account for their interplay.

In spite of the apparent simplicity, proper accounting of the
two effects is not simple. This can be easily understood in the
case of radiative losses that damp turbulence potential energy
and convective fluxes. The processes involve not the largest
but the smallest scales, and that is where the difficulties lie.
Large scales are long lived and, most importantly, have very
low degrees of vorticity, thus making them easier to account
for. In fact, bulk properties like convective fluxes that are dom-
inated by the large scales were described acceptably well by
simple, one-eddy theories like the mixing-length theory. Small
scales are quite different in nature and considerably harder to
describe, for in them reside the highest levels of vorticity. Con-
trary to the universal Kolmogorov spectrum describing me-
dium-size eddies, the high wavenumber k (UV), the small-scale
part of the energy spectrum is not universal.

Both large eddy simulation (LES) and one-point turbulent
closure models are useless in this context. In the first case,
present and foreseeable LESs barely (and often do not even)
resolve the first scale of the Kolmogorov spectrum, let alone
scales that are several orders of magnitude smaller and that are
where most of the vorticity resides. In addition, the sub–grid
scale models used to account for the unresolved scales are quite
different from the traditional, Smagorinsky-like model used for
shear-generated and/or unstable stratification. Similarly, the
well-known one-point closure models that were successfully
developed over the last 40 years do not provide the energy
spectrum E(k) but only its integral over all k’s. Thus, the vor-
ticity which is the integral of k2E(k) over all k’s cannot be
evaluated. The problem can also be presented in different terms.
One needs to properly account for the Peclet number

ntPe 5 , (1)
x

which is the ratio of the turbulent viscosity to the radiative
conductivity x. The variable nt(k) for an eddy of size 21ø ∼ k
is the key quantity; from the first model by Heisenberg (Batch-
elor 1970) to the most modern ones (Lesieur 1991), nt(k) is
expressed as a UV property, since it is contributed by all eddies
smaller than k21. Its general structure is thus of the form

`

′ ′( )n (k) { w k dk , (2)t E
k

and the challenge is to model the variable w(k9, Pe, Ri), which
is a function of Ri and Pe. We need to stress that the difficulty
is not that of carrying out a calculation that includes Pe, which
is mostly a bookkeeping problem (Townsend 1958a, 1958b);
the real difficulty is to compute Pe, which in turn implies a
knowledge of the UV part of the turbulent energy spectrum.
This requires a turbulence model.

Fortunately, the inapplicability of both LES and one-point
closures has been recently remedied by the renormalization
group (RNG) techniques. As discussed elsewhere (Canuto &
Dubovikov 1966), the RNG is an exact model for the UV
portion of the eddy spectrum because it entails a finite number
of irreducible Feynmann diagrams that can be summed exactly.
This is precisely the region critical to the evaluation of the
dissipation timescales in question. In practical terms, the RNG
techniques provide the function w(k, Pe, Ri) of equation (2)
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Fig. 1.—Turbulent kinetic energy K (in units of ) vs. Ri for different values of Pe0 (defined in the text). The level of turbulence decreases as Ri increases.2 24ø Se
When radiative losses are important, , stratification is weakened, and the slowdown is considerably reduced.Pe ! l

and thus nt(k) and the required timescale as a21 2t ∼ n (k)kt

function of Pe and Ri.
Next, consider the question of Ricr. Thus far, all studies have

assumed . To avoid possible confusion, let us recallRi 5 1/4cr

that such result does not follow from the work of Townsend
(1958a, 1958b), which is often used in this context. The purpose
of the latter was to show that under Pe ! 1 conditions, the
effective Richardson number is RiPe rather than Ri itself, or
that the effective Brunt-Vaisala frequency is not N but
NPe . This weakens the role of stratification. Any complete1/2! N
turbulence model naturally reproduces this renormalization.
The is strictly the result of linear stability analysis.Ri 5 1/4cr

There is, however, ample evidence from a variety of sources
that turbulence exists quite past . Monin & YaglomRi 5 1/4
(1971) report up to , as from work of G. I. Taylor.Ri 5 10cr

Modern data from laboratory and oceanography (Martin 1985;
Smart 1988; Wang, Large, & McWilliams 1996) yield

, which is more than a factor of 5 larger thanRi 5 1.4–1.6cr

. The problem thus reduces to that of finding a phys-Ri 5 1/4cr

ical definition of Ricr. We suggest abandoning the linear stability
approach which, irrespective of what it predicts, may have no
bearing on a fully turbulent regime such as the one found in
stars and adopts the following physical definition: Ricr is the
value of Ri at which the turbulent kinetic energy vanishes. From
the pragmatic point of view, the definition only makes sense
if one has a model of turbulence. The model that we employ
has been tested on more than 80 turbulent statistics pertaining
to a large variety of turbulent flows of very different natures,
from convection to shear, two-dimensional, rotation, etc. In
addition, when integrated over all k’s, the model equations
reproduce the one-point closure models that were constructed
in the last 40 years.

Finally, and quite importantly, the model satisfies the fol-
lowing two requirements: when (no shear), it repro-Ri r `
duces the standard formulae for convection; when , itRi r 0
reproduces well-known expressions for shear-induced
turbulence.

2. NEW MODEL

The basic physical variables are (Reynoldsu u 5 ti j ij

stresses), (turbulent kinetic energy), (con-K { 1/2t u v 5 hii i i

vective fluxes), (temperature variance), and the rates of dis-2v̄
sipation of K and , e and ev. Here, u and v are the fluctuating2v̄

components of the velocity and temperature fields. The time-
scales discussed earlier are the ones that enter in the deter-
mination of ev, since

2 21¯e 5 v t and t 5 f (Pe, Ri). (3)v v v

The key function f(Pe, Ri) is provided by the RNG (Canuto &
Dubovikov 1998, eq. [34]). The dynamic equations for the
above variables have already been derived (Canuto 1994, eqs.
[22]–[26]), and there is no reason to repeat them here. Rather,
we discuss the main steps and the main results, leaving the
details for a more extended publication.

First, neglecting the diffusion terms and taking the stationary
limit, the above dynamic equations reduce to algebraic rela-
tions. If one takes the T and U fields as depending on z only,

­T ­T
r d , U 5 [U(z), V(z), 0], (4)i3­x ­zi

the results simplify considerably. The Reynolds stresses and
convective flux are given by the expressionsF 5 c rwvc p

­U
uw 5 2n and wv 5 x b, (5)T T

­z

where is the superadiabatic gradient. The21b 5 TH (∇ 2 ∇ )p ad

turbulent viscosity and conductivity are expressed as

2K
(n , x ) 5 2 (S , S ), (6a)T T n h

e

where Sn,h are dimensionless functions of

S 5 F(tN, tS, Pe). (6b)n,h

Second, one assumes that (production 5 dissipation),P 5 e
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Fig. 2.—Momentum turbulent diffusivity nT (in units of x) vs. Ri for different
values of Pe0. The standard model gives no momentum diffusivity past

. In the present model, nT does not diverge at ; its value dependsRi 5 1/4 Ri r 0
on Pe0 and is finite beyond .Ri 5 1/4

Fig. 3.—Same as in Fig. 2 but for the heat diffusivity xT. The standard
model gives no heat diffusivity past .Ri 5 1/4

where ( )2 21 2 2 2N 5 2gT b, S 5 U , 1 V ,z z

2 2P 5 n S 2 x N , (6c)T T

while the local expression for e is

3/2K
e 5 , (6d)

øe

where the mixing length must be specified. Third, substi-øe

tuting equations (6a) and (6d) with P given by equation (6c),
the relation gives the equation for K(Ri, Pe):P 5 e

2 2K 5 2ø S (S 2 RiS ). (6e)e n h

3. RESULTS

Using equation (6b), one can solve equation (6e). The result
is shown in Figure 1. As one can see, even for large Pe0

[Pe , , where Ko is the Kolmo-2 2 21 3/25 c ø Sx c 5 p(2/3Ko)0 e e e

gorov constant], no radiative losses, the present model yields
turbulence quite past . The standard model hasRi 5 1/4cr

beyond . In the new model, turbulence diesK 5 0 Ri 5 1/4
out only at , in agreement with oceanographic andRi 5 1–2cr

laboratory data. As radiative losses by the eddies become im-
portant and Pe decreases, the value of Ricr increases and tur-
bulence lives longer since the damping effect of the stabilizing
temperature gradient is reduced. Thus, Ricr is not a universal
value but depends on the radiative losses, that is, on Pe:

Ri 5 f (Pe). (7a)cr

This is indeed borne out by the present model. In Figures 2
and 3, we exhibit the turbulent viscosity nT and the turbulent
conductivity xT versus Ri for different values of Pe0. The stan-
dard model can be represented by

n 1T 5 , Ri ! 1/4, (7b)
x 12Ri

nT 5 0, Ri 1 1/4. (7c)
x

Some comments are in order: first, as , equation (7b)Ri r 0
yields a divergent result that is unphysical since impliesRi r 0
no stratification (neutral case), but it is known that nT is finite;
second, equation (7c) gives zero mixing beyond ;Ri 5 1/4
third, relations (7b) and (7c) are only valid for small Pe, but
even so, they do not distinguish among different Pe’s. By con-
trast, the present model is valid for arbitrary Pe, recovers the
renormalization for small Pe’s, has a Pe dependence,Ri r RiPe
and exhibits a turbulent regime that lasts quite past the

limit.Ri 5 1/4cr

4. CONCLUSIONS

Until this new model is tested in a specific stellar case, we
cannot claim that the amount of “missing mixing” that is re-
quired by stellar data can all be provided by the new model.
On the other hand, we have shown that the standard model
substantially underestimates the mixing and that perhaps there
is no need to search for other mechanisms. Shear-generated
turbulence may be sufficient, if properly quantified.
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